TU Wien:Mathematik 3 VO (Panholzer)/Mitschrift WS06/9.VO LaTeX

Aus VoWi
Zur Navigation springen Zur Suche springen

 %-------------------------------------------------  % Created by Markus Diem, Markus Nemetz  %------------------------------------------------- \documentclass[12pt,a4paper]{article} \usepackage[latin1]{inputenc} %umlaute \usepackage[german]{babel} \usepackage{amsmath} \usepackage{amssymb} \usepackage[dvips]{graphicx} \usepackage[bf]{caption} \usepackage[pdfborder= 0]{hyperref} %links zu refs ohne rahmen \usepackage{dsfont} %fuer angabe der rationalen zahlen etc. \renewcommand{\captionfont}{\footnotesize} \setlength{\belowcaptionskip}{3pt} \renewcommand{\arraystretch}{1.3} %abstand beim brechen der formeln  %**************************************************  % spezifische Makros  %************************************************** \newcommand{\real}{\mathds{R}} \newcommand{\definition} {\textbf{Definition: }} \newcommand{\bsp} {\textbf{Beispiel: }} \title{\textbf{Mathematik III} \linebreak \large{Vorlesung 9, 01.12.2006}} \author{Markus Nemetz\\basierend auf den Aufzeichnungen von Michael Birsak} \date{Dezember 2006} \DeclareGraphicsExtensions{.eps} \setcounter{MaxMatrixCols}{11} \begin{document} \maketitle \section{Vorbemerkung} Prof. Panholzer hat die illustrierenden Beispiele aus der zur VO empfohlenen Lekt{\"u}re gebracht - sie sind hier nicht angef{\"u}hrt. Die z.T. gerafften Zusammenstellungen sind z.T. auch die jeweiligen theoretischen Grundlagen zu den {\"U}bungsbeispielen, die in ausgearbeiteter Form jeweils nach der {\"U}bungsrunde auf \emph{http://wikiserver.fsinf.at/mathe3/} zu finden sind. \begin{flushright} Markus Nemetz 04.12.2006 \end{flushright} \section{Fourier-Analysis - Fourier-Reihen} Periodische Funktiom: $f(t): \mathbb{R} \mapsto \mathbb{C}$ Periode $T: f(t+T)=f(t), \,\, \forall t \in \mathbb{R}$. Beispiel Rechtecksschwingung: \begin{center} \includegraphics[scale=0.4]{fourier_refunktion.eps} \end{center} \newpage Beispiel Sägezahnschwingung: \begin{center} \includegraphics[scale=0.4]{fourier_saegezahn.eps} \end{center} Wichtig ist die genaue Kenntnis des Verlaufs von Sinus ... \begin{center} \includegraphics[scale=0.4]{sinus.eps} \end{center} ... und Cosinus: \begin{center} \includegraphics[scale=0.4]{cosinus.eps} \end{center} Idee: Wir wollen periodische Funktionen durch Überlagerung von $\sin$- und $\cos$-Funktion verschiedener Amplituden und Frequenzen darstellen. $f(t)$ ist eine $T$-periodische Funktion. Aus $\omega:=\frac{2\pi}{T}$ folgt: \begin{gather*} F(x) := f(\frac{x}{\omega}) \,\, \text{ist }\, 2\pi\text{-periodische Funktion} \end{gather*} Nachweis: \begin{gather*} F(x+2\pi)=f(\frac{x+2\pi}{\omega}) = f(\frac{x}{\omega} + \frac{2\pi T}{2\pi})= f(\frac{x}{\omega}) = F(x) \end{gather*} \textbf{Tringonometrische Polynome}. Sinus-Cosinus-Term \begin{gather*} \frac{a_0}{2} + \sum_{N=1}^n a_n\cdot \cos(n \cdot \omega \cdot t) + \sum_{N=1}^n a_n\cdot \sin(n \cdot \omega \cdot t) \end{gather*} In der Exponentialform: \begin{gather*} \sum_{K=-N}^N c_K \cdot e^{i\cdot\omega\cdot k \cdot T} \end{gather*} $N$ ist dabei der Grad des tringonometrischen Polynoms. $\omega=\frac{2\pi}{T}$: Tringonometrische Polynome sind $T$-periodische Funktionen \begin{gather*} e^{i\cdot \varphi} = \cos \varphi + i\cdot \sin \varphi \end{gather*} Umrechnen zwischen beiden Formen: \begin{gather*} e^{i\cdot\omega\cdot k \cdot T} = \cos(\omega\cdot K \cdot T) + i\cdot\sin(\omega\cdot K \cdot T)\\ \sum_{K=-N}^N c_K \cdot e^{i\cdot\omega\cdot k \cdot T} = \sum_{K=-N}^N c_k \cdot \cos(\omega\cdot K \cdot T) + \sum_{K=-N}^N i \cdot c_k \cdot\sin(\omega\cdot K \cdot T)=\\ \sum_{K=1}^N c_k \cdot \cos(\omega\cdot K \cdot T) + c_0 + \sum_{K=1}^N c_k \cdot \cos(-\omega\cdot K \cdot T) + \sum_{K=1}^N i \cdot c_k \cdot\sin(\omega\cdot K \cdot T) + \\ + i \cdot \sin(0) \cdot c_0 + \sum_{K=1}^N i \cdot c_k \cdot\sin(\omega\cdot K \cdot T)\\ \Rightarrow \sum_{K=-N}^N c_K \cdot e^{i\cdot\omega\cdot k \cdot T} =\underbrace{c_0}_{\frac{a_0}{2}} + \sum_{K=1}^N \underbrace{(c_k + c_{-k})}_{a_k} \cdot \cos (\omega\cdot K \cdot T) + \sum_{K=1}^N \underbrace{(c_k - c_{-k})}_{b_k} \cdot i \cdot \sin (\omega\cdot K \cdot T) \end{gather*} \textbf{Koeffizientenvergleich}: Umrechnen $c_0=\frac{a_0}{2}$, $c_n + c_{-n} = a_n, n \geq 1$, $c_n - c_{-n} = b_n, n \geq 1$: \begin{gather*} a_n, b_n \text{ geg. } \, \, \Rightarrow \, \, c_k = \frac{a_k - i\cdot b_k}{2},\,\, c_{-k} = \frac{a_k + i\cdot b_k}{2} \end{gather*} Beispiel: Gegeben sind $\sin^3 t$, $\cos^3 t$. Gesucht sind tringonometrische Polynome, die diese darstellen. \begin{gather*} e^{i\cdot t} = \cos t + i \cdot \sin t \,\, | \, x^3\\ \cos 3 \cdot t + i \cdot \sin 3 \cdot t = (\cos t + i \cdot \sin t)^3 = \cos^3 t + 3 \cdot \cos^2 t \cdot \sin t \cdot i - 3 \cdot \cos t \cdot \sin^2t - i \cdot \sin^3 t\\ \text{Re, Im:} \,\, \cos 3\cdot t = \cos^3 t - 3 \cdot \cos t \cdot \underbrace{\sin^3 t}_{1-\cos^2 t} \,\, \square\\ \sin 3 \cdot t = \underbrace{3 \cdot \cos^2 t}_{1-\sin^2 t} \cdot \sin t - \sin^3 t \Rightarrow \dots \\ \square \,\, = \cos^3 t - 3 \cdot \cos t + 3 \cdot \cos^3 t = 4 \cdot \cos^2 - 3 \cdot \cos t\\ \Rightarrow \,\, \cos^3 t = \frac{\cos 3 \cdot t + 3 \cos t}{4}\,\, \text{tringonometr. Polynom Grad 3} \end{gather*} \textbf{Frage}: Gegebene $T$-periodische Funktion $f(t)$. Wir setzen voraus: $f(t)$ lässt sich durch tringonometrische Polynome vom Grad $N$ darstellen. Wie bestimmt man die Koeffizienten $a_n$,$b_n$ bzw. $c_k$? Antwort: Mit Hilfe der \textbf{Formeln von Euler-Fourier}, d.h.: \begin{gather*} \mathbf{a_n = \frac{2}{T} \cdot \int f(t) \cdot \cos (n \cdot \omega \cdot t) \, dt}\\ \mathbf{b_n = \frac{2}{T} \cdot \int f(t) \cdot \sin (n \cdot \omega \cdot t)\, dt}\\ \mathbf{c_k = \frac{1}{T} \cdot \int f(t) \cdot e^{-i \cdot k \cdot \omega \cdot t}} \end{gather*} Beweisidee: Funktion $\{1\} \, \cup \, \{ \cos(n\cdot\omega\cdot t), n=1,2,3,\dots\} \cup \sin(n\cdot\omega\cdot t), n=1,2,3,\dots\}$ bilden ein Orthogonalsystem bezüglich: \begin{gather*} (f(t),g(t)) \mapsto \int_0^T f(t) \cdot \overline{g(t)} \, dt\\ \text{d.h.} \,\, \int_0^T \cos (n \cdot \omega \cdot t) \, dt\dot \cos (m \cdot \omega \cdot t) \, dt, = 0 \qquad m \neq n\\ \int_0^T \cos (n \cdot \omega \cdot t) \, dt\dot \sin (m \cdot \omega \cdot t) \, dt = 0, \qquad \forall m,n\\ \text{d.h.} \,\, \int_0^T \sin (n \cdot \omega \cdot t) \, dt\dot \sin (m \cdot \omega \cdot t) \, dt, = 0 \qquad m \neq n \end{gather*} Analog: Funktion $\{e^{i\cdot k \cdot \omega \cdot t}, k \in\mathbb{Z}\}$ bilden ein Orthonormalsystem, d.h.: \begin{gather*} \int e^{i\cdot k \cdot \omega \cdot t} \cdot e^{-i\cdot k \cdot \omega \cdot t}\, dt = \begin{cases} 0 & K \neq l\\ T & K = l\end{cases} \end{gather*} \textbf{Nachteil}: Tringonometrische Funktionen sind immer differenzierbare Funktionen, d.h. \begin{center} \includegraphics[scale=0.4]{tringpoly1.eps} \end{center} ... oder \begin{center} \includegraphics[scale=0.4]{tringpoly2.eps} \end{center} ... können nicht als tringonometrische Polynome dargestellt werden. \textbf{Definition tringonometrische Reihen}: \begin{gather*} \sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T} := \lim_{N\rightarrow\infty} \sum_{K=1}^{+\infty}c_K \cdot e^{i \cdot K \cdot \omega \cdot T}\\ \frac{a_0}{2} + \sum_{K=1}^{+\infty}a_n \cdot \cos (n\cdot \omega \cdot t) + \sum_{K=1}^{+\infty}b_n \cdot \sin (n\cdot \omega \cdot t) \end{gather*} Nachteil: Reihen müssen nicht notwendigerweise konvergieren.\\ \textbf{Eigenschaften für $T$-periodische Funktionen $f(t)$}: \begin{itemize} \item Stückweie stetig auf Intervall $I=[a,b]$ \begin{center} \includegraphics[scale=0.3]{stueckwstetig.eps} \end{center} Stetig auf $[a,b]$ bis auf endlich viele Punkte $t_1,t_2,\dots,t_n$ zbd der linksseitige und rechtsseitige Grenzwert $f(t^+)$ bzw. $f(t^-)$ existiert für $t_1,t_2,\dots,t_n$ \item Stückweise stetig differenzierbar auf $I=[a,b]$. Stetig differenzierbar (differenzierbar und Ableitung stetig) bis auf endlich viele Punkte $t_1,t_2,\dots,t_n$, für die aber die rechtsseitigen bzw. linksseitigen Grenzwerte $f(t^+)$, $f(t^-)$, $f'(t^+)$, $f'(t^-)$ existieren. \end{itemize} \textbf{Definition}: Gegeben $T$-periodische Funktion $f(t)$, die stückweise stetig auf $[0,T]$ sein soll. Dann ist die Fourierreihe $S_f(t)$ von $f(t)$ definiert als tringonometrische Reihe \begin{gather*} S_f(t)=\sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T}, \,\, S_f(t)=\frac{a_0}{2} + \sum_{K=1}^{+\infty}a_n \cdot \cos (n\cdot \omega \cdot t) + b_n \cdot \sin (n\cdot \omega \cdot t) \end{gather*} wobei die Koeffizienten $c_K$ bzw. $a_n$, $b_n$ über die Formeln von Euler-Fourier berechnet werden: \begin{gather*} \mathbf{a_n = \frac{2}{T} \cdot \int f(t) \cdot \cos (n \cdot \omega \cdot t) \, dt}\\ \mathbf{b_n = \frac{2}{T} \cdot \int f(t) \cdot \sin (n \cdot \omega \cdot t)\, dt}\\ \mathbf{c_k = \frac{1}{T} \cdot \int f(t) \cdot e^{-i \cdot k \cdot \omega \cdot t}} \end{gather*} Beispiel Rechtecksschwingung: \begin{gather*} f(t)=\begin{cases} 1 & 0 \leq t \leq \pi\\ -1 & \pi < t < 2pi\end{cases}\,\,\, f(t) \dots 2\pi\text{-periodisch fortges.}\\ \omega = 1 \Rightarrow \omega = \frac{2\pi}{T} \end{gather*} \begin{center} \includegraphics[scale=0.4]{fourier-re.eps} \end{center} Gesucht: Fourier-Reihe von $f(t)$ - wähle Sinus-Cosinus-Form: \begin{gather*} a_0 = \frac{1}{\pi} \cdot [\int_0^\pi 1 \, dt + \int_\pi^{2\pi} (-1) \, dt] = \frac{1}{\pi} \cdot [t|_0^\pi + (-t)|_\pi^{2\pi}] = \frac{1}{\pi} \cdot (\pi - 0 - 2\pi + \pi)=0\\ n \geq 1: \qquad a_n=\frac{1}{\pi} \cdot [\int_0^\pi 1 \cdot \cos(n\cdot\omega \cdot t) \, dt - \int_\pi^{2\pi} (-1) \cdot \cos(n\cdot\omega \cdot t) \, dt] = \\\frac{1}{\pi} \cdot [\frac{\sin(n\cdot t)}{n}|_0^\pi - \frac{\sin(n\cdot t)}{n}|_\pi^{2\pi}]=\\ \qquad \frac{1}{\pi} \cdot \underbrace{[\frac{\sin(n\cdot \pi)}{n} - \frac{\sin(0)}{n}- \frac{\sin(2 \cdot n\cdot \pi)}{n} + \frac{\sin(n\cdot \pi)}{n}]}_{0}=0\\ b_n=\frac{1}{\pi} \cdot [\int_0^\pi 1 \cdot \sin(n\cdot\omega \cdot t) \, dt - \int_\pi^{2\pi} (-1) \cdot \sin(n\cdot\omega \cdot t) \, dt] = \\\frac{1}{\pi} \cdot [\frac{-\cos(n\cdot t)}{n}|_0^\pi + \frac{\cos(n\cdot t)}{n}|_\pi^{2\pi}]=\\ \frac{1}{n\cdot\pi} \cdot [\underbrace{-\cos(n\cdot \pi)}_{\lozenge} + \underbrace{\cos(0)}_{1} + \cos(2\cdot \pi \cdot n) - \cos(n\cdot \pi)]= \dots\\ \lozenge \qquad 1,n \,\text{gerade},\,\, -1,n \,\text{ungerade}\, \Rightarrow (-1)^n\\ \dots=\frac{1}{n\cdot\pi} \cdot [1-2\cdot(-1)^n + \underbrace{(-1)^{2\cdot n}}_{1}] = \frac{2}{n\cdot\pi} [1-(-1)^n] = \begin{cases}0 & n \, \text{ gerade} \\ \frac{4}{n\cdot \pi}& n \, \text{ ungerade}\end{cases} \end{gather*} $\Rightarrow$ Fourier-Reihe von $f(t)$ lautet: \begin{gather*} S_f(t)=\frac{4}{\pi} \cdot (\frac{\sin(t)}{1} + \frac{\sin(3\cdot t)}{3} + \frac{\sin(5\cdot t)}{5} + \dots) \end{gather*} Als \textbf{Gibbssches Phänomen} oder 'Ringing' bezeichnet man in der Mathematik das typische Verhalten von Fourierreihen in der Umgebung von Sprungsstellen. Entwickelt man eine Fourierreihe aus einer unstetigen Funktion, so ergeben sich an den Unstetigkeitsstellen typische Über- und Unterschwinger, die sich auch dann nicht verringern, wenn man versucht, die Funktion noch besser zu approximieren. Dies liegt daran, dass die Reihe an der Unstetigkeitsstelle nicht mehr gleichmäßig, sondern nur punktweise konvergiert. Die Höhe des Überschwingers in einer Richtung lässt sich bestimmen zu: \begin{gather*} \frac{1}{\pi}\int_0^\pi \frac{\sin t}{t}\, dt - \frac{1}{2} = 0.089490\dots \end{gather*} womit sich ein prozentueller Fehler von 17,898\%, gerundet 18\%, der Sprunghöhe ergibt. Der Effekt wurde nach seinem Entdecker, dem amerikanischen Physiker Josiah Willard Gibbs, benannt. \begin{center} \includegraphics[scale=0.4]{gibbspheno.eps} \end{center} \textbf{Rechenregeln für Fourier-Reihen}: $f(t)$, $g(t)$ stückweise stetige Funktionen: \begin{gather*} S_f(t)=\sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T}, \,\, S_g(t)=\sum_{K=-\infty}^{+\infty} d_K \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \begin{itemize} \item Linearität \begin{gather*} \alpha \cdot f(t) + \beta \cdot g(t) \,\, \text{besitzt Fourier-Reihe} \,\, \sum_{K=-\infty}^{+\infty} (\alpha \cdot c_K + \beta \cdot d_K) \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \item Zeitumkehr, Konjugation \begin{gather*} f(-t) \curvearrowright \sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T}, \,\, \overline{f(t)} \curvearrowright \sum_{K=-\infty}^{+\infty} \overline{c_K} \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \item Streckung \begin{gather*} f(c\cdot t) \curvearrowright \sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot c \cdot \omega \cdot T} \qquad c > 0\\ f(c \cdot T) \dots \frac{T}{c}\,\,\text{-periodische Funktion} \end{gather*} \item Verschiebung im Zeitbereich \begin{gather*} f(t+a) \curvearrowright \sum_{K=-\infty}^{+\infty} (c_K \cdot e^{i \cdot a \cdot K \cdot \omega \cdot T}) \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \item Verschiebung im Frequenzbereich \begin{gather*} e^{i \cdot K \cdot \omega \cdot T} \cdot f(t) \curvearrowright sum_{K=-\infty}^{+\infty} c_{K-n} \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \end{itemize} Beweise: Über Definition des Euler-Fourier-Integrals Satz: Betrachte $f(t)$, periodisch mit Periode $T$, stetig auf $\mathbb{R}$ und stückweise stetig differenzierbar. $f(t)$ besitzt die Fourier-Reihe \begin{gather*} S_f(t)\sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} $\Rightarrow$ Fourier-Reihe $S_{f'}(t) \curvearrowright f'(t)= \sum_{K=-\infty}^{+\infty} c_K \cdot i \cdot K \cdot \omega \cdot e^{i \cdot K \cdot \omega \cdot T}$. Satz: Betrachte periodisch mit Periode $T$, stetig auf $[0,T]$, $S_f(t)\sum_{K=-\infty}^{+\infty} c_K \cdot e^{i \cdot K \cdot \omega \cdot T}$. Fourier-Reihe der Stammfunktion: \begin{gather*} F(t)=\int_0^t f(\tau)\, d\tau \end{gather*} $F(t)$ i.A. nicht mehr periodisch, nur wenn \begin{gather*} \int_0^\tau f(t)\, dt = 0 \,\, \Leftrightarrow c_0 = 0 \,\, \Rightarrow\\ S_F(t) = -\frac{1}{T} \cdot \int:0^T f(t) \, dt + \sum_{K=-\infty, K\neq 0}^\infty \frac{c_K}{i\cdot K \cdot \omega} \cdot e^{i \cdot K \cdot \omega \cdot T} \end{gather*} \end{document}