TU Wien:Recommender Systems VU (Neidhardt)
- Recommender Systems VU (Neidhardt) (TU Wien, 4 Materialien)
- Recommender Systems VU (Sacharidis) (TU Wien, veraltet, 1 Material)
Daten[Bearbeiten | Quelltext bearbeiten]
Vortragende | Thomas Elmar Kolb• Julia Neidhardt |
---|---|
ECTS | 3,0 |
Letzte Abhaltung | 2024S |
Sprache | English |
Mattermost | recommender-systems • Register • Mattermost-Infos |
Links | tiss:194035, eLearning |
Masterstudium Data Science | Modul MLS/CO - Machine Learning and Statistics - Core |
Masterstudium Business Informatics | Modul EE/COR - Enterprise Engineering Core (Gebundenes Wahlfach) |
Inhalt[Bearbeiten | Quelltext bearbeiten]
noch offen, bitte nicht von tiss oder Homepage kopieren, sondern aus Studierendensicht beschreiben.
Ablauf[Bearbeiten | Quelltext bearbeiten]
- 4 short exercises on JupyterHub (20 points)
- 1 group project with 5-8 persons (30 points)
- 1 exam, 60 minutes (50 points)
Benötigte/Empfehlenswerte Vorkenntnisse[Bearbeiten | Quelltext bearbeiten]
- Exercises: Basic python programming
- Project: Basic python programming, Neural Network and Git knowledge very useful
Vortrag[Bearbeiten | Quelltext bearbeiten]
noch offen
Übungen[Bearbeiten | Quelltext bearbeiten]
2024S:
Individual assignments 1 to 4 proceeded as before. This time, the group assignment involved solving the RecSys Challenge related to recommending Danish news articles (see https://recsys.eb.dk/).
Fundamentally, the task (in groups of five) was actually interesting and enjoyable - however, nearly every circumstance prevented a thorough engagement with the content. Ultimately, this led to an incredible increase in time expenditure (60+ hours per person), which I have not previously encountered at the TU. Points of frustration included:
- A poorly documented, buggy code framework.
- Significant limitations of the environment intended for training - consistent various error messages and hardware restrictions.
- Unclear specifications regarding submission and execution.
Compiling a functioning submission, including data, took an exceedingly long time. While well-intentioned, the exercise turned out to be excessive! Hopefully, this will not occur again. Additionally, the Danish newspaper involved is quite a low-quality publication similar to "Bild" in Germany - though this is, of course, irrelevant here.
To this time, grading has not be done... let's see but really difficult to do a fair rating with all hurdles and team issues. Really not a comfy situation.
Prüfung, Benotung[Bearbeiten | Quelltext bearbeiten]
noch offen
Dauer der Zeugnisausstellung[Bearbeiten | Quelltext bearbeiten]
noch offen
Zeitaufwand[Bearbeiten | Quelltext bearbeiten]
noch offen
Unterlagen[Bearbeiten | Quelltext bearbeiten]
noch offen
Tipps[Bearbeiten | Quelltext bearbeiten]
noch offen
Highlights / Lob[Bearbeiten | Quelltext bearbeiten]
noch offen
Verbesserungsvorschläge / Kritik[Bearbeiten | Quelltext bearbeiten]
noch offen