TU Wien:Statistik und Wahrscheinlichkeitstheorie UE (Stadler)/Übungen SS11/Beispiel 27

Aus VoWi
Zur Navigation springen Zur Suche springen

Betrachten Sie wieder die Daten aus Beispiel 14 auf Seite 8. Bestimmen bzw. erstellen Sie:

a) 0.05–, 0.10–, 0.90– und 0.95–Quantil

b) Quartile

c) Varianz und Standardabweichung

d) Variationskoeffizient

e) Interquartilabstand

f) Medmed

g) Schiefe und standardisierte Schiefe

h) Kurtosis und standardisierte Kurtosis

i) ZSCORES für Minimum und Maximum

j) eine 5-Zahlen-Zusammenfassung und zeichnen Sie eine Boxplot–Darstellung.

Der ZSCORE ist der standardisierte Wert:

Lösungsvorschlag/ Lösung via R erstellt[Bearbeiten | Quelltext bearbeiten]

x <- a0002$Gewicht

a) quantile(x, c(0.05, 0.1, 0.25, 0.75, 0.9, 0.95))

b) summary(x) - daraus lassen sich die Quartile und andere wichtige "Fakten" ablesen

c) Standardabweichung (sd) sd(x)

Varian (var) var(x)

d) sd(x) / mean(x)

e) Interquartilabstand (IQR) IQR(x)

f) Medmed mad(x)

g) Hier ist wichtig zu wissen, dass für das Bsp. ein Zusatzpacket benötigt wird das von dem Institut zur Verfügung gestellt wird(findet man durch Googln auf der R-Seite: e1071 - Dieses muss wie das Bsppacket zuerst installiert werden dann im programm selbst "importiert" library(e1071)

Dann kann man mit skewness(x) die Schiefe abrufen

standardisierte Schiefe: skewness(x)/sqrt(6/n) n steht für die Anzahl der "Daten" in der Tabelle

h) Für die Kurtosis gilt dasselbe wie für die Schiefe. Das Zusatzpaket muss hierfür installiert sein. kurtosis(x)

standardisierte kurtosis: kurtosis(x) / sqrt(24/n)

i) (min(x)-mean(x)) / sd(x)

j) boxplot(x) fivenum(x)