TU Wien:Statistik und Wahrscheinlichkeitstheorie UE (Stadler)/Übungen SS09/Beispiel 28
Betrachten Sie wieder die Daten aus Beispiel 16. Bestimmen bzw. erstellen Sie:
a) 0.05–, 0.10–, 0.90– und 0.95–Quantil
b) Quartile
c) Varianz und Standardabweichung
d) Variationskoeffizient
e) Interquartilabstand
f) Medmed
g) Schiefe und standardisierte Schiefe
h) Kurtosis und standardisierte Kurtosis
i) ZSCORES für Minimum und Maximum
j) eine 5-Zahlen-Zusammenfassung und zeichnen Sie eine Boxplot–Darstellung.
Der ZSCORE ist der standardisierte Wert:
Lösungsvorschlag/ Lösung via R erstellt[Bearbeiten | Quelltext bearbeiten]
Bsp. ist genauso zu lösen wie Bsp: 26 und 27
x <- a0005$Abweichung
a) quantile(x, c(0.05, 0.1, 0.25, 0.75, 0.9, 0.95))
b) summary(x) - daraus lassen sich die Quartile und andere wichtige "Fakten" ablesen
c) Standardabweichung (sd) sd(x)
Varian (var) var(x)
d) sd(x) / mean(x)
e) Interquartilabstand (IQR) IQR(x)
f) Medmed mad(x)
g) Hier ist wichtig zu wissen, dass für das Bsp. ein Zusatzpacket benötigt wird das von dem Institut zur Verfügung gestellt wird(findet man durch Googln auf der R-Seite: e1071 - Dieses muss wie das Bsppacket zuerst installiert werden dann im programm selbst "importiert" library(e1071)
Dann kann man mit skewness(x) die Schiefe abrufen
standardisierte Schiefe: skewness(x)/sqrt(6/n) n steht für die Anzahl der "Daten" in der Tabelle
h) Für die Kurtosis gilt dasselbe wie für die Schiefe. Das Zusatzpaket muss hierfür installiert sein. kurtosis(x)
standardisierte kurtosis: kurtosis(x) / sqrt(24/n)
i) (min(x)-mean(x)) / sd(x)
j) boxplot(x) fivenum(x)