TU Wien:Social Network Analysis VU (Neidhardt)

Aus VoWi
Zur Navigation springen Zur Suche springen

Daten[Bearbeiten]

Vortragende Univ.Ass. Mag.rer.nat. Dr.techn. Julia Neidhardt
ECTS 3
Abteilung Information Systems Engineering
Wann Wintersemester
Sprache English
Links tiss:194050
Zuordnungen
Master Data Science Wahlmodul MLS/EX - Machine Learning and Statistics - Extension
Master Business Informatics Wahlmodul EE/COR - Enterprise Engineering Core

Mattermost: Channel "social-network-analysis" Team invite & account creation link Mattermost-Infos

Inhalt[Bearbeiten]

noch offen, bitte nicht von TISS oder Homepage kopieren, sondern aus Studierendensicht beschreiben.

Ablauf[Bearbeiten]

Zuerst zwei Einzelübungen, dann eine Gruppenübung (max. 4 Personen) mit Präsentation und abschließend eine Prüfung über den Semesterstoff. Im WS18 war die Präsentation je nach Termin ein bis zwei Wochen vor der Gruppenabgabe, war nicht besonders sinnvoll weil viele Gruppen noch nicht fertig waren und der Rest die spätere Abgabe eigentlich nicht gebraucht hätte.

Benötigte/Empfehlenswerte Vorkenntnisse[Bearbeiten]

Grundlegende Programmierkenntnisse (in Python oder R)

Vortrag[Bearbeiten]

2018WS

Früh und mit Anwesenheitspflicht (Liste geht durch), die meisten Infos sind auch auf den Folien zu finden, die Exercises aus den Folien werden aber gemeinsam bearbeitet

In den Vorträgen nach den Übungsabgaben wurden die Lösung jeder Aufgabe von Studenten vorgetragen, dazu musste am Beginn der LVA gekreuzt werden (ob die Kreuze Auswirkungen auf die Übungspunkte haben ist noch nicht bekannt)

Übungen[Bearbeiten]

2018WS

2 individuelle Aufgabenstellungen, 1 Gruppenarbeit (Short Paper + Präsentation)

Es wurden Daten von derStandard.at zur Verfügung gestellt. Dabei handelt es sich um Kommentare zu Artikeln und Votes, die für Kommentare vergeben wurden.

In den ersten zwei Aufgaben müssen aufgrund der Daten verschiedene Netzwerke konstruiert werden. Für die Netzwerke mussten dann verschiedenste Eigenschaften und Algorithmen berechnet werden. Programmiersprache ist entweder Python oder R (inkl. Libraries, z.B. NetworkX).

Für das Projekt wurden ebenfalls die Daten von derStandard.at verwendet. Man konnte sich eine Forschungsfrage aussuchen und diese dann mit (selbst gewählten) Methoden beantworten. Die Ergebnisse mussten auch im Rahmen einer Präsentation vorgestellt werden und es musste ein kurzes Paper (max. 4 Seiten) verfasst werden.

Es wurden über TUWEL Jypyter-Notebooks zur Verfügung gestellt die bei den Übungen extrem helfen.

Prüfung, Benotung[Bearbeiten]

Prüfung 05.02.2019

5 Fragen mit je 2-4 Unterpunkten die meist nicht voneinander abhängig waren. Die Fragen waren Stoffbereiche, die Unterpunkte waren die eigentlichen Fragen.

Arbeitszeit war 75min + kurze Verlängerung, war nicht arg stressig aber die Zeit hat man gebraucht. Inhaltlich viel aber es waren keine Aufsätze zu schreiben, Taschenrechner war verboten aber auch nicht notwendig

Note kommt laut LVA-Leitung ca. 2 Wochen, tatsächliche Dauer noch offen

Dauer der Zeugnisausstellung[Bearbeiten]

Laut LVA-Leitung ca. 1 Woche nach Prüfungsnote, tatsächliche Dauer noch offen

Zeitaufwand[Bearbeiten]

Meiner Meinung nach den ECTS entsprechend, sobald die Übungslösungen und Prüfungsfragen aus den letzten Semestern verfügbar sind sollte es schneller gehen

Unterlagen[Bearbeiten]

noch offen

Tipps[Bearbeiten]

Wurde früher als "Web Science" angeboten (https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=4366&dsrid=448&courseNr=188921).

Verbesserungsvorschläge / Kritik[Bearbeiten]

Anwesenheitspflicht ist nervig und nicht notwendig, besonders um die Uhrzeit. Folien waren gut, teilweise aber doppelt in den Foliensätzen.

Präsentation der Gruppenarbeit bis zu zwei Wochen vor der eigentlichen Abgabe ist wenig sinnvoll