TU Wien:Algebra und Diskrete Mathematik VU (diverse)/Übungen 2023W/Beispiel 479

Aus VoWi
Zur Navigation springen Zur Suche springen

Zeigen Sie, dass in jedem Vektorraum V über dem Körper K für alle gilt:

Dieses Beispiel hat einen unbekannten Lösungsstatus. Bitte editiere diese Seite und schreibe den dir bekannten Status ins Beispiel. Die möglichen Werte sind hier: Vorlage:Beispiel dokumentiert. Führe folgende Änderung durch:
{{Beispiel|1=
Angabetext
}}

oder

{{Beispiel|
Angabetext
}}

zu (im Falle einer korrekten, unverifizierten Lösung "solved". Auch möglich "unsolved", "wrong", "verified_by_tutor". Alle möglichen Werte sind hier: Vorlage:Beispiel dokumentiert.)

{{Beispiel|status=solved|1=
Angabetext
}}


Lösungsansatz[Bearbeiten | Quelltext bearbeiten]

Anmerkung: Ich bin nicht sicher, ob man das so machen kann. Falls jemand dafür oder dagegen ist, bitte ich um Feedback zu diesem Ansatz. mfg, W wallner

Wichtig ist der Unterschied zwischen und .

bezeichnet das neutrale Element bezüglich der Addition im Körper K. Also ist ein Skalar.

ist der Nullvektor, der enthält lauter .

Wenn man einen beliebigen Vektor mit multipliziert, erhält man den Nullvektor. Der Grund dafür ist, dass im K ein Körper ist. Und in Ringen (und somit auch in Körpern) ergibt die Multiplikation mit dem neutralen Element der Addition immer das neutrale Element der Addition. Der Beweis steht im Buch auf Seite 81, ungefähr in der Mitte:



 // -(a.0)


Damit können wir jetzt den in der Angabe geforderten Beweis führen:







mfg, W wallner

Lösungsvorschlag von m4rS[Bearbeiten | Quelltext bearbeiten]

Hab auch ne Idee wie mans rechnen könnte u genauso keine Ahnung obs so stimmt ;) (bzw egentlich würd ichs eh genauso rechnen wie oben) Wichtig ist auch die Def 3.2 im Buch mMn



Daher ist (-lambda*a) auch das Inverse zu (-lambda)*a u da es in jeder Gruppe usw nur ein Inverses zu jedem Element geben kann, folgt daraus, dass die beiden ident sind


Lösungsvorschlag von neo[Bearbeiten | Quelltext bearbeiten]

Ich hätte es so gemacht:
Da ist und damit einen Vektor repräsentiert ist
Nun kann man das ganze umformen:



Links[Bearbeiten | Quelltext bearbeiten]