TU Wien:Analysis VU (diverse)/Übungen 2024S/Beispiel 369
Bestimmen Sie das Definitheitsverhalten der folgenden Matrix:
{{Beispiel|1= Angabetext }}
oder
{{Beispiel| Angabetext }}
zu (im Falle einer korrekten, unverifizierten Lösung "solved". Auch möglich "unsolved", "wrong", "verified_by_tutor". Alle möglichen Werte sind hier: Vorlage:Beispiel dokumentiert.)
{{Beispiel|status=solved|1= Angabetext }}
Hilfreiches[Bearbeiten | Quelltext bearbeiten]
Hauptminorenkriterium[Bearbeiten | Quelltext bearbeiten]
Eine symmetrische Matrix ist genau dann positiv definit, wenn alle Hauptminoren positiv sind.
Eine symmetrische Matrix ist genau dann negativ definit, wenn die Hauptminoren für die geraden k positiv und für die ungeraden k negativ sind (bzw. wenn -A positiv definit ist. Das alternierende Schema entsteht durch die Auswirkungen der elementaren Spalten/Zeilenumformungen)
- (führende) Hauptminoren
Zum Beispiel:
1. Hauptminor:
2. Hauptminor:
3. Hauptminor:
Lösung von Jules[Bearbeiten | Quelltext bearbeiten]
von --Jules 15:24, 12. Apr. 2011 (CEST)
Das kann man mithilfe des Hauptminorenkriteriums einfach bestimmen:
1. Hauptminore:
2. Hauptminore:
3. Hauptminore:
Alle Minoren positiv, d.h. die Matrix ist positiv definit!