Man löse die folgenden linearen homogenen Differentialgleichungen:
(a) y″−8y′−9y=0{\displaystyle y''-8y'-9y=0}
(b) y″+8y′+16y=0{\displaystyle y''+8y'+16y=0}
(c) y″−8y′+25y=0{\displaystyle y''-8y'+25y=0}
y″−8y′−9y=0{\displaystyle \ y''-8y'-9y=0}
Charakteristische Gleichung: λ2−8λ−9=0{\displaystyle \ \lambda ^{2}-8\lambda -9=0}
λ1,2=82±(82)2+9{\displaystyle \ \lambda _{1,2}={\frac {8}{2}}\pm {\sqrt {\left({\frac {8}{2}}\right)^{2}+9}}}
⇒ λ1=9,λ2=−1{\displaystyle \Rightarrow \ \lambda _{1}=9,\lambda _{2}=-1}
λ1,λ2∈R,λ1≠λ2{\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {R} ,\lambda _{1}\neq \lambda _{2}}
Ansatz: y(x)=C1eλ1x+C2eλ2x{\displaystyle y(x)=C_{1}e^{\lambda _{1}x}+C_{2}e^{\lambda _{2}x}}
⇒y(x)=C1e9x+C2e−x{\displaystyle \Rightarrow y(x)=C_{1}e^{9x}+C_{2}e^{-x}} mit C1,C2∈R{\displaystyle \ C_{1},C_{2}\in \mathbb {R} }
y″+8y′+16y=0{\displaystyle \ y''+8y'+16y=0}
Charakteristische Gleichung: λ2+8λ+16=0{\displaystyle \ \lambda ^{2}+8\lambda +16=0}
λ1,2=−82±(82)2−16=−4{\displaystyle \ \lambda _{1,2}=-{\frac {8}{2}}\pm {\sqrt {\left({\frac {8}{2}}\right)^{2}-16}}=-4}
λ1,λ2∈R,λ1=λ2{\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {R} ,\lambda _{1}=\lambda _{2}}
Ansatz: y(x)=(C1+C2x)eλ1x{\displaystyle y(x)=(C_{1}+C_{2}x)e^{\lambda _{1}x}}
⇒y(x)=(C1+C2x)e−4x{\displaystyle \Rightarrow y(x)=(C_{1}+C_{2}x)e^{-4x}} mit C1,C2∈R{\displaystyle \ C_{1},C_{2}\in \mathbb {R} }
y″−8y′+25y=0{\displaystyle \ y''-8y'+25y=0}
Charakteristische Gleichung: λ2−8λ+25=0{\displaystyle \ \lambda ^{2}-8\lambda +25=0}
λ1,2=82±(82)2−25{\displaystyle \ \lambda _{1,2}={\frac {8}{2}}\pm {\sqrt {\left({\frac {8}{2}}\right)^{2}-25}}}
⇒ λ1=4+3i,λ2=4−3i{\displaystyle \Rightarrow \ \lambda _{1}=4+3i,\lambda _{2}=4-3i}
λ1,λ2∈C,λ1,2=α±iβ{\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {C} ,\lambda _{1,2}=\alpha \pm i\beta }
Ansatz: y(x)=eαx(C1cos(βx)+C2sin(βx)){\displaystyle \ y(x)=e^{\alpha x}(C_{1}cos(\beta x)+C_{2}sin(\beta x))}
⇒y(x)=e4x(C1cos(3x)+C2sin(3x)){\displaystyle \Rightarrow y(x)=e^{4x}(C_{1}cos(3x)+C_{2}sin(3x))} mit C1,C2∈R{\displaystyle \ C_{1},C_{2}\in \mathbb {R} }